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Abstract

The problem of determining shell-side Taylor dispersion coefficients for a shell-and-tube configuration is examined in detail for both
ordered as well as disordered arrangement of tubes. The latter is modeled by randomly placing N tubes within a unit cell of a periodic
array. It is shown that shell-side Taylor dispersion coefficient DT is expressed by DT = DM(1 + kPe2) and the coefficient k is divergent
with N, where DM is the molecular diffusivity of solute on the shell side and Pe is the Peclet number given by aU/DM with a and U being
the radius of tube and the mean fluid velocity on the shell side, respectively. The coefficient k depends on the spatial average and the fluid
velocity weighted average of the concentration of solute on the shell side. The behavior of the coefficient k with N arises due to logarith-
mically divergent nature of concentration disturbances caused by each tube in the plane normal to the axes of the tubes. An effective-
medium theory is developed for determining conditionally-averaged velocity and concentration fields and hence the shell-side Taylor
dispersion coefficients. Its predictions are compared with the results of rigorous numerical computations. The present study also presents
formulas for determining the shell-side Taylor dispersion coefficients for square and hexagonal arrays of tubes with cell theory
approximations.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Shell and tube configurations are widely used in heat
and mass transfer equipments such as hollow fiber modules
used in gas separation by membranes and heat exchangers.
Recently these configurations are utilized even as a chemi-
cal reactor in a microfluidic system [1]. In spite of their
widespread use in practice, theoretical studies to predict
the transport properties such as heat (or mass) transfer
coefficients and Taylor dispersion coefficients for the pro-
cess using the configurations are not many. Sangani and
Acrivos [2] determined the heat transfer coefficient for the
shell side for the case when the mean flow direction is per-
0017-9310/$ - see front matter � 2006 Elsevier Ltd. All rights reserved.
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pendicular to the tubes in the limit of small Peclet and
small Reynolds numbers and that in the limit of small Rey-
nolds number but large Peclet number was obtained by
Wang and Sangani [3]. For the longitudinal flow parallel
to the axes of tubes Sparrow et al. [4] determined the
shell-side heat transfer coefficients for the periodic arrays
of tubes. The case of random arrays of tubes was examined
by Koo and Sangani [5] to determine the mass transfer
coefficients for the shell side. They obtained shell-side
Sherwood numbers for longitudinal flow along the axes
of tubes inside which a fluid flows countercurrently in a
hollow-fiber contactor.

Another important mass transfer phenomenon encoun-
tered in chemical processes is Taylor dispersion. The pres-
ent study deals with the problem of determining shell-side
Taylor dispersion coefficients for laminar flow parallel to
the axes of tubes. The tube walls are assumed to be
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Nomenclature

As area occupied by the shell side fluid
a radius of tubes
c concentration of solute on shell side
DM molecular diffusivity
DT Taylor dispersion coefficient
f solute concentration on the shell side as a func-

tion of x1 and x2

g(r) radial distribution function
G pressure gradient non-dimensionalized by lU/a2

in axial direction of tubes
P(rj0) probability of finding a tube at the distance r

from the origin given a tube at origin 0

Pe Peclet number based on shell-side flow
r radial distance from the center of the tube at

origin
R exclusion radius in effective-medium model
Rc radius of fluid cell in cell model
Rs radius of shell
S(0) structure factor at zero wavenumber limit
U superficial velocity of the fluid on the shell side
u fluid velocity on the shell side

xa position vector of the center of tube a
xL coordinates (position vector) of the lattice

points of the array
huis spatial average of u over shell side
hani average of coefficients an over N tubes in a unit

cell
hAni average of multipoles An over N tubes in a unit

cell
hui0 unconditionally averaged velocity, u

hui1 conditionally averaged velocity, u

Greek symbols

v indicator function
d Dirac’s delta function
/ area fraction of the tubes
q density of the shell fluid
s unit cell area non-dimensionalized by a2

l viscosity of fluid
lB Brinkman viscosity
w product of velocity and concentration satisfying

Eq. (35)
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non-absorbing and non-reacting. Both the periodic and the
random arrangement of tubes are considered. The case of
random arrays is examined by generating hard-disk confi-
gurations of N non-overlapping disks placed within a unit
cell of a periodic array and computing Taylor dispersion
coefficient for each configuration. It is found that Taylor
dispersion coefficient is logarithmically divergent with N.
This logarithmic divergence arises from the fact that the
fundamental singularity for Laplace equation in a two-
dimensional space corresponding to a point source of mass
is log r, r being the distance from the source. For the fully
developed case the concentration outside the tubes satisfies
Poisson equation with the strength of the source or sink
related to the fluid velocity and the area fraction of tubes
in the unit cell. The conditionally-averaged concentration
field obtained by averaging over all configurations of tubes
with the position of one of the tubes fixed at, say, origin
satisfies therefore Laplace equation at great distances from
the tube. Detailed analysis of the source and sink near the
tube, however, shows a non-zero net source leading to the
aforementioned logarithmic divergence.

It is practically useful to confirm the occurrence of such
logarithmic divergence experimentally. However it seems
that the relevant experimental observation has not been
reported yet. Instead, a set of experiments carried out by
Yang and Cussler [6] may be considered as an indirect evi-
dence confirming that the behavior of the logarithmic
divergence can be observed in real situations although their
experiments are concerned with a different problem which
is to determine shell-side Sherwood number for the longitu-
dinal laminar flow in a countercurrent hollow-fiber contac-
tor. In their experiment, it is found that the shell-side
Sherwood number is unexpectedly small, i.e., 0.08 when
the number of tubes (fibers) is 2100 in a hollow fiber mod-
ule. And this result was not clearly explained in their paper.
Later Koo and Sangani [5] have shown that the shell-side
Sherwood number becomes vanishingly small as the num-
ber of tubes increases due to the divergent nature of con-
centration disturbance caused by each tube in the plane
normal to its axis. This behavior of shell-side Sherwood
number results from the fact that the governing equation
for the concentration field on the shell side is also given
in the form of Laplace equation with source and sink in
two dimensional space, which is similar to the case of the
present study. The shell-side Sherwood number by Koo
and Sangani’s analysis is 0.09 for the experimental condi-
tion given by Yang and Cussler [6], which accounts for
the experimental results well.

An exact expression is derived for the coefficient of loga-
rithmic dependence that depends on the conditionally-
averaged velocity outside a tube fixed at origin. An
effective-medium theory is developed for predicting the con-
ditionally-averaged velocity and concentration field and
hence the coefficient of logarithmic dependence of Taylor
dispersion coefficient. The theory is shown to be in good
qualitative agreement with the simulation results. The sim-
ulation results for Taylor dispersion coefficients for square
and hexagonal array are compared also with a cell theory
approximation. Agreement between the theory and numer-
ical results is excellent at small area fractions. At larger area
fractions, the cell theory gives better estimates for hexago-
nal arrays.
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2. Formulation of the problem and the method

The present study deals with the problem of determining
the shell-side axial dispersion coefficient resulting from the
combination of molecular diffusion of a solute in the plane
normal to the tubes and the variations in the axial velocity
x1
x3

x2

Fig. 1a. Schematic diagram of shell-and-tube configuration.

x1

x2

square array hexagonal array 

tube

shell side 

unit cell 

Fig. 1b. Periodic arrays (square array and hexagonal array) of tubes.

unit cell 

Fig. 1c. Random arrays of tubes.
of the fluid in a shell-and-tube configuration as shown in
Fig. 1. The solute concentration c satisfies the usual con-
vection–diffusion equation

oc
ot
þ u

oc
ox3

¼ DMr2c; ð1Þ

where DM is the molecular diffusivity of the solute in the
shell side fluid. We take x3-axis to be along the axes of
the tubes and (x1,x2) to be the coordinates of a point in
the plane normal to the tubes. The distances are non-
dimensionalized by a, the radius of the tubes. And the axial
velocity of fluid on the shell side is denoted by u. The aver-
age concentration of the solute hcis defined by

hcis ¼
1

ð1� /Þs

Z
As

cdA ð2Þ

satisfying a similar equation

ohcis
ot
þ huis

ohcis
ox3

¼ DT

o2hcis
ox2

3

ð3Þ

with DT being the Taylor dispersion coefficient. Here, s is
the area of the unit cell non-dimensionalized by a2, / is
the area fraction of the tubes, and As is the area occupied
by the shell side fluid. The spatial average over the shell
side area is denoted by a subscript s outside the angular
brackets. The average velocity of the fluid on the shell side
is huis = U/(1 � /), U being the superficial velocity. Since
the above equations are linear we may choose a relatively
simple form of hcis to evaluate the Taylor dispersion coef-
ficient. We follow Koch and Brady [7] and take

hcis ¼ ðx3 � huistÞ=U ; ð4Þ

which clearly satisfies Eq. (3). Now substituting

c ¼ hcis þ a2f ðx1; x2Þ=DM ð5Þ

into Eq. (1) we obtain

u
U
� 1

1� /
¼ a2r2f : ð6Þ

Note that the Laplacian operator is taken in the x1–x2

plane.
The present analysis is restricted to the case of non-

adsorbing, non-reacting tube walls. The positions of the
center of N tubes will be denoted by xa, a = 1,2, . . . ,N.
These centers lie within a unit cell of a periodic array.
The boundary conditions for the concentration are there-
fore spatial periodicity and the vanishing normal compo-
nent of $f at the surface of the tubes

n � rf ¼ 0 at jx� xaj ¼ 1: ð7Þ

Averaging Eq. (1) over the shell side after substituting for c

from Eq. (5) and recasting the resulting expression in the
form given by Eq. (3) we obtain the following expression
for the Taylor dispersion coefficient:

DT

DM

¼ 1þ kPe2; k ¼ 1

1� /
hf is �

huf is
U

� �
; ð8Þ
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where Pe = aU/DM is the Peclet number. And hfis and hufis
are defined by

hf is ¼
1

ð1� /Þs

Z
As

f dA; ð9Þ

huf is ¼
1

s

Z
As

uf dA: ð10Þ

The method of multipole expansion is used for deter-
mining the velocity and concentration fields. The method
uses periodic fundamental singular solutions of Laplace
and bi-harmonic equations and their derivatives to con-
struct velocity and concentration fields. We shall describe
here in more detail the procedure for determining the veloc-
ity field that follows the analysis presented in Sangani and
Yao [8]. The shell side fluid velocity satisfies

r2u ¼ G; ð11Þ

where G is the pressure gradient non-dimensionalized by
lU/a2. A multipole expansion expression for the velocity
field is given by [8]

u ¼ U 0 þ
XN

a¼1

X1
n¼0

½Aa
n@

n
1 þ eAa

n@
n�1
1 @2�S1ðx� xaÞ; ð12Þ

where Aa
n and eAa

n are the 2n-multipoles induced by the pres-
ence of tube a, eA0 � 0, and @n

k ¼ ðo
n=oxn

kÞðk ¼ 1; 2Þ is a
short-hand notation for the nth order partial derivative
with respect to xk. The function S1 is a spatially periodic
function satisfying [9]

r2S1ðxÞ ¼ 4p
1

s
�
X

xL

dðx� xLÞ
" #

: ð13Þ

In the above expression, xL are the coordinates of the lat-
tice points of the array and d is the Dirac’s delta function.
In addition to the above differential equation we require
that the integral of S1 over the unit cell be zero. A Fourier
series representation of S1 and an efficient technique based
on Ewald summation for evaluating S1 are described by
Hasimoto [9]. Substituting Eq. (12) into Eq. (11), and mak-
ing use of Eq. (13), we find that the non-dimensional pres-
sure gradient is related to the sum of monopoles:

G ¼ 4p
s

XN

a¼1

Aa
0 ¼ 4/hA0i; ð14Þ

where hA0i is the average monopole. The multipoles Aa
n andeAa

n and the constant U0 in Eq. (12) are to be determined
from the no-slip boundary condition u = 0 on the surface
of the tubes and Eq. (11), which states that the non-dimen-
sional superficial velocity is unity. For this purpose it is
convenient to re-expand u around the center of each tube.
For example, u is expanded near tube a as

u ¼
X1
n¼0

½ua
nðrÞ cos nhþ ~ua

nðrÞ sin nh� ð15Þ
with

ua
nðrÞ ¼ aa

nr�n þ ea
nrn for n P 1;

ua
0ðrÞ ¼ aa

0 log r þ ea
0 þ Gr2=4; ð16Þ

where r = jx � xaj. The terms singular at r = 0 in the above
expression arise from the singular part of S1 at r = 0. Not-
ing that S1 behaves as �2log r as r ? 0 (Hasimoto [9]), and
using the formulas for the derivatives of log r given in
Appendix A, we obtain

aa
0 ¼ �2Aa

0; aa
n ¼ 2ð�1Þnðn� 1Þ!Aa

n for n P 1: ð17Þ

The coefficients eAa
n are similarly related to ~aa

n. The coeffi-
cients of the regular terms, such as ea

n, are related to the
derivatives of the regular part of u at x = xa [8]. For
example

ea
n ¼

1

n!
½@n

1 � nn@
n�2
1 r2�urðxaÞ; ð18Þ

~ea
n ¼

1

n!
½@n�1

1 @2 � ~nn@
n�3
1 @2r2�urðxaÞ; ð19Þ

where nn = n/4 for n P 2, ~nn ¼ ðn� 2Þ=4 for n P 3, and
n0 ¼ n1 ¼ ~n1 ¼ ~n2 ¼ 0. In Eqs. (18) and (19), ur denotes
the regular part u obtained by removing the singular part,
�2log r, from S1(x � xa).

To determine the relation between U0 in Eq. (12) and the
superficial velocity we must integrate u over the area As

occupied by the shell side fluid. Since the integrals of S1

and its derivatives over the unit cell vanish, it is easier to
evaluate the integral of u over As by integrating Eq. (12)
over the unit cell and subtracting from it the integral of u

inside the tubes. With the non-dimensional superficial
velocity taken as unity, the above procedure yields

1 ¼ U 0 �
1

s

XN

a¼1

Z 1

r¼0

Z 2p

h¼0

uaðr; hÞr dr dh: ð20Þ

Care must be taken in carrying out above integration to ac-
count for the singular nature of ua at x = xa. Upon carrying
out integration, we obtain

U 0 ¼ 1þ /ð1� /=2ÞhA0i þ 2/hA2i: ð21Þ

The no-slip boundary condition on the surface of the tube,
together with the orthogonality of trigonometric functions,
requires that

ua
nð1Þ ¼ ~ua

nð1Þ ¼ 0: ð22Þ

Substituting for aa
n and ea

n from Eqs. (17) and (18) into
expressions for ua

n and applying Eq. (22) we obtain a set
of linear equations in the multipole coefficients Aa

n. This
set is truncated by retaining only the terms with n 6 Ns

to yield a total of 2Ns + 1 equations in the same number
of unknowns, solving which yields the velocity of the fluid
on the shell side.

The concentration of the fluid on the shell side is deter-
mined in a similar manner. A formal solution of Eq. (3)
that is spatially periodic is given by
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f ðxÞ ¼
XN

a¼1

X1
n¼0

½Ba
n@

n
1 þ eBa

n@
n�1
1 @2�S1ðx� xaÞ

þ ½Aa
n@

n
1 þ eAa

n@
n�1
1 @2�S2ðx� xaÞ; ð23Þ

where the spatially periodic function S2 satisfies

r2S2 ¼ S1: ð24Þ

As shown by Hasimoto [9]

SmðxÞ ¼
1

psð�4p2Þm�1

X
k6¼0

k�2m expð2pik � xÞ; ð25Þ

where the summation is over all reciprocal lattice vectors
except k = 0. As mentioned earlier, Hasimoto [9] has de-
scribed a method for evaluating these functions using the
Ewald summation technique.

Substituting for f and us from Eqs. (23) and (12) into Eq.
(6) and using Eqs. (13) and (24), we find that, in order for
Eq. (23) to be the solution for f, we must have

4p
s

XN

a¼1

Ba
0 ¼ U 0 �

1

1� /
: ð26Þ

To determine the multipoles Bn, we expand f near the cen-
ter of each tube. Near tube a

f ðxÞ ¼
X1
n¼0

f a
n ðrÞ cos nhþ ~f a

nðrÞ sin nh ð27Þ

with

f a
0 ¼�

1

4
r2ð1� log rÞaa

0þ
r2

4
ea

0þ ba
0 log rþ g0þ

r4

64
G� 1

1�/
r2

4
;

ð28Þ

f a
1 ¼

1

2
r log r� 1

2

� �
aa

1þ
r3

8
ea

1þ ba
1r�1þ ga

1r; ð29Þ

f a
n ¼

r2�n

4ð1� nÞa
a
nþ

rnþ1

4ðnþ 1Þe
a
nþ ba

nr�nþ ga
nrn for n P 2; ð30Þ

and similar expressions for ~f a
n. Once again, the coefficients

of the singular terms, e.g., ba
n, can be related to the multi-

poles induced by tube a (i.e., Aa
n and Ba

n) and the coefficients
of regular terms, ga

n can be related to the derivatives of the
regular part of f at x = xa. The results are given in Appen-
dix A. The condition of vanishing flux integrated over the
surface of the tube yields

Ba
0 ¼

1

4
Aa

0 �
1

32
Gþ 1

4/
� 1

2
Aa

2 �
1

4ð1� /Þ : ð31Þ

Thus, we see the monopole induced is not an unknown. On
noting that U0 is given by Eq. (21), we see that the condi-
tion Eq. (26) is automatically satisfied.

The average concentration of the shell side fluid is deter-
mined from integrating f given by Eq. (23) over the entire
unit cell and subtracting from it the integrals over the area
occupied by the tubes. The latter are evaluated using the
local expansion near each tube (cf. Eq. (27)). The resulting
expression is
hf is ¼
3/

8ð1� /Þ �
/hg0i
1� /

þ /
96

ð27� 11/Þ
1� /

ha0i

þ /
1� /

hb2i �
/

24ð1� /Þ ha4i: ð32Þ

Here, hg0i, ha0i, hb2i, and ha4i are averages of each coeffi-
cient defined in the same manner as hA0i in Eq. (14).

For determining hufis, we need to integrate the product
uf over the area occupied by the shell side fluid. This is dif-
ficult because it would require evaluating S1, S2, and their
derivatives at many points outside the tubes. It is more effi-
cient instead to solve for an auxiliary function w defined by

r2w ¼ f ; w ¼ 0 at jx� xaj ¼ 1: ð33Þ
Substituting for f from Eq. (33) into Eq. (10) and using
Green’s theorem we obtain

shuf is ¼
Z

As

uf dA ¼
Z

As

ur2wdA

¼
Z

As

wr2udAþ
Z

oAs

ðurw� wruÞ � ndl: ð34Þ

The integral over oAs, which consists of the unit cell bound-
ary and the surface of the tubes, vanishes owing to the
boundary condition u = w = 0 on the tube surface and the
spatial periodicity of w and u. On using Eq. (11) we obtain

huf is ¼
G
s

Z
As

wdA: ð35Þ

A formal expression for w can be written in the same way
as for u and f:

wðxÞ ¼ w0 þ
XN

a¼1

X1
n¼0

½Ca
n@

n
1 þ eCa

n@
n�1
1 @2�S1

þ ½Ba
n@

n
1 þ eBa

n@
n�1
1 @2�S2 þ ½Aa

n@
n
1 þ eAa

n@
n�1
1 @2�S3; ð36Þ

where S1, S2 and S3, and their derivatives, are to be evalu-
ated at x � xa, and $2S3 = S2. Expression Eq. (25) with
m = 3 can be used to evaluate S3. The coefficients w0, Cn

and eCn are to be evaluated from the boundary condition
w = 0 on the surface of the tubes. Finally, since $2S1 =
4p/s at all points outside the tubes, we require thatXN

a¼1

Ca
0 ¼ 0: ð37Þ

To determine the coefficients eCa
n, we expand w near the sur-

face of each tube as

w ¼
X1
n¼0

wnðrÞ cos nhþ ~wnðrÞ sin nh ð38Þ

with

wn ¼ wr
n þ ws

n; ð39Þ

wr
n ¼ hnrn þ gn

4ð1þ nÞ r
nþ2 þ en

32ðnþ 1Þðnþ 2Þ r
nþ4

þ G
32 � 12 � 6 r6dn0 �

dn0

64ð1� /Þ r
4 for n P 0: ð40Þ
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Fig. 2. The coefficient k for periodic arrays as function of /.
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For the purpose of applying boundary condition at r = 1,
we evaluate ws

n at r = 1 using

ws
n ¼ b1An þ b2Anþ2 þ b3Anþ4 þ b4Bn þ b5Bnþ2 þ b6Cn;

ð41Þ
where

b1 ¼
ð�1Þnðn� 3Þ!

16
; b2 ¼

ð�1Þnþ1ðn� 2Þ!ðnþ 2Þ
8

;

b3 ¼
ð�1Þnn!ðnþ 3Þðnþ 4Þ

16n
;

b4 ¼
ð�1Þnþ1ðn� 2Þ!

8
; b5 ¼

ð�1Þnþ1n!ðnþ 2Þ
2n

;

b6 ¼ 2ð�1Þnðn� 1Þ!

b1 ¼ 3=64; b2 ¼ 1=4; b4 ¼ 1=2; b3 ¼ b5 ¼ b6 ¼ 0 for n¼ 0;

b1 ¼ 5=32; b2 ¼ 3=8; b4 ¼ 1=2 for n¼ 1;

b1 ¼ 3=32 for n¼ 2:

ð42Þ
Now the integral of w over the area occupied by the shell

side fluid can be determined by integrating w given by Eq.
(36) over the unit cell first and then subtracting from it the
integrals inside the tubes using the expression Eq. (38) for
w near each tube. The final result for the mixing-cup based
concentration difference is

huf is ¼�G/
5

32 � 9 hA0i þ
5

32
hA2i þ

3

8
hA4i þ

5

4
hA6i þ

5

16
hB0i

�

þhB2i
2
� 3

2
hB4iþhC0i � 2hC2i þ hh0i þ

hg0i
8

þ 1

32 � 6 he0i �
1

1�/

� �
þ G

32 � 12 � 8 � 6�
w0

/

�
: ð43Þ

Here, the averages of multipoles and coefficients are also
defined in the same manner as hA0i in Eq. (14).
3. Results and discussion

3.1. Periodic arrays

The simulation results for the coefficient k as a function
of / for square and hexagonal arrays are given in Fig. 3. It
is found that the coefficient k shows minimum value
around / = 0.2 and 0.4 for square and hexagonal array,
respectively. This behavior is due to the difference in
dependency of hfis and hufis on /. Since both velocity
and concentration field are disturbed due to the presence
of tube and the magnitude of the disturbance increases
with /, it is easily expected that hufis is more affected by
the disturbance than hfis and thus the difference between
the two terms become large. It is also noted that the dis-
persion in square array is larger than that in hexagonal
array.
The results of exact calculations are compared with the
predictions obtained using a cell theory [10] which is more
appropriate for periodic arrays than effective-medium the-
ory. In this theory, the periodic unit cell is replaced by a
fluid cell of outer radius Rc = /�1/2 and inner radius unity.
(Fig. 2) The fluid velocity is given by

u ¼ �2A0 log r þ G
4

r2 þ e0: ð44Þ
The constants are determined using Eq. (14) and the
boundary conditions u = 0 at r = 1 and ou/or = 0 at
r = Rc, and the condition that the average velocity of the
fluid in the cell equals 1/(1 � /). This yields

� 1

A0

¼ log R2
c �

3

2
þ 2

R2
c

� 1

2R4
c

: ð45Þ
Similarly from Eq. (6) the concentration for the shell side
fluid is given by

f ¼ A0
1

2
r2ð1� log rÞ þ 1

R2
c

r4

16
� r2

4

� �� �
� 2B0 log r

� r2

4ð1� /Þ for r > 1: ð46Þ
The constant B0 is determined using the conditions of no
flux at r = 1 and at r = Rc. The average concentrations of
the fluids, and hence the Taylor dispersion coefficients,
can be determined once this constant is determined. The
results are given below.
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hf is ¼
2

R2
c � 1

A0

R4
c

6
� R4

c log Rc

8
� R2

c

16
� 5

48

� ��
þ B0 �R2

c log Rc þ
R2

c � 1

2

� �
� R4

c � 1

16ð1� /Þ

�
; ð47Þ

huf is ¼
2

R2
c

A2
0 �R4

c log R
4

þ 1

16
ðR4

c � 1Þ
� �
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� ��
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1

2
R4
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ðR4

c � 1Þ
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þ 1

R2
c

R6
c
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� R4

c

4
þ 1

12

� ���
: ð48Þ

The predictions obtained using the cell theory are shown
in Fig. 3. It is seen that the cell theory is more accurate for
hexagonal arrays as might be expected based on the obser-
vation that a hexagonal cell is closer to the circular cell
used in the theory than a square cell.

3.2. Random arrays

Now, the more interesting case of random arrays is con-
sidered. Fig. 4 shows the coefficient k as functions of N, the
number of tubes per unit cell, for / = 0.1. The results were
obtained by averaging shell side concentration difference
over 100 hard-disk configurations for each N. A molecular
dynamics code was used for generating hard-disk random
configurations. We see that the coefficient k increases loga-
rithmically with N at large N. The solid lines in this Fig. 4
indicate the slopes predicted by the theory to be described
next.
As mentioned in the Introduction the logarithmic diver-
gence arises due to the fact that the fundamental solution
of Laplace equation in a two-dimensional space is log r.
The tube side fluid acts as a source of solute while the shell
side as a sink. The present study will show that there is a
net source due to the presence of each tube, and this would
imply that the concentration disturbance caused by a tube
would grow logarithmically. To show this let us begin by
deriving the equation for the conditionally-averaged con-
centration, i.e., the ensemble-averaged solute concentration
subject to a condition that a tube is present with its center
fixed at origin.

The equation governing the conditionally-averaged con-
centration outside the tube is slightly complicated since a
given point may lie inside another tube or outside all the
tubes. Let v be an indicator function whose value at a given
point is unity if it lies inside a tube and zero otherwise. The
conditionally-averaged source density hui1 then equals

hð1� vÞr2f i1ðrj0Þ ¼ hui1 ¼ hð1� vÞðu� ð1� /Þ�1Þi1ðrj0Þ;
ð49Þ

where hfi1 is the conditionally-averaged concentration. The
apparent source due to the presence of tube at the origin as
seen from a distance R is therefore given by

J ap ¼ 2p
Z R

0

h�ð1� vÞðu� ð1� /Þ�1Þi1ðrj0Þr dr: ð50Þ

The above source must equal the net outward solute
transfer from the surface r = R. At large r, the source
density vanishes since the conditional averages converge
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to the unconditional averages and h(1 � v)u)i0 =
h(1 � v)(1 � /)�1) > 0 = 1. The integrand in the last inte-
gral in Eq. (50) therefore vanishes at large r and one may
substitute R =1 for the purpose of evaluating the total
apparent source due to the presence of a tube at origin.
Since hfi1(rj0) must be function of r only for a random iso-
tropic medium, and must satisfy Laplace equation at large
r where the source density hui1 vanishes, we must have that
for large r

hf i1ðrj0Þ ! �J ap log r=ð2pk�Þ þ const: ð51Þ
Here, k* is the effective diffusivity at large r satisfying
hji1 = � k*$hci1, where hci1 and hji1 are, respectively, the
conditionally-averaged concentration and flux. The prob-
lem of predicting the effective diffusivity k* of a medium
containing disks of diffusivity jc randomly dispersed in a
medium of unit diffusivity has been examined by a number
of investigators in the past including Sangani and Yao [11]
who presented results for k* as a function of jc and /. In
the present study, k* corresponds to the value when jc van-
ishes. The behavior of hfi1 as predicted by Eq. (51) is valid
for r large compared with unity (the tube radius) but small
compared with the unit cell size, i.e., for 1� r� h. On the
unit cell length scale hfi1 must, of course, satisfy the period-
icity requirement.

We analyze the problem using the method of matched
asymptotic expansions with Eq. (51) representing the
behavior in the inner region, r� h. In the outer region,
valid for r = O(h), hfi1 must satisfy Laplace equation to
leading order, must be spatially periodic, and must match
with Eq. (51) as r ? 0. These conditions are satisfied by

hf i1ðrj0Þ ! �J ap=ð4pk�ÞS1ðrÞ þ const: ð52Þ

The constants in Eqs. (51) and (52) need not be equal. It
may be noted that the Laplacian of hfi1 as given by Eq.
(52) is not exactly zero since $2S1 = 4ps. Thus the apparent
source at the center of the tube is balanced by a uniform
sink of strength Jap/s distributed throughout the unit cell.
This sink strength, being O(h�2), does not affect the leading
order behavior in the inner region.

Now using the fact that S1 ? 2log(h/r) + O(1) as r ? 0,
and noting that h2 = pN// it is easy to show that

hf i1ðrj0Þ ! B log N þOð1Þ ð53Þ

with

B ¼ J ap=ð2pk�Þ: ð54Þ

To determine the constant B we must evaluate the source
density hui1 in Eq. (49) and integrate it over the space out-
side the fixed tube. The first term on the right-hand side in
Eq. (49) equals the conditionally-averaged velocity in a
random array of fixed disks

hð1� vÞui1ðrj0Þ ¼ hui1ðrj0Þ; ð55Þ

where u denotes the velocity field in a fixed bed of disks
with u = us for v = 0 and u = 0 for v = 1.
To determine the conditionally-averaged velocity in a
fixed bed of disks, we multiply the momentum equation
(11) with the fluid indicator function 1 � v and ensemble
average the resulting expression with a disk fixed at origin.

hð1� vÞr2ui1 ¼ Gh1� vi1: ð56Þ

Inside the disks the velocity is zero and hence

hui1 ¼ hð1� vÞui1: ð57Þ

Taking Laplacian of the above equation we obtain

r2hui1 ¼ r � hð1� vÞrui1 �r � hurvi1
¼ hð1� vÞr2ui1 � hrv � rui1: ð58Þ

Note that the second term on the right-hand side of the first
equality in the above equation vanishes owing to the no-
slip boundary condition. Since $v equals the unit normal
vector pointing into the disk multiplied by a delta function
centered at the disk circumference, the last term on the
extreme right side of the above equation is given by

�hrv � rui1ðrj0Þ ¼
Z
jr�r0 j¼1

P ðr0j0Þn � rhui2ðrj0; r0Þdr0:

ð59Þ

The integral in the above equation can be expressed in
terms of an integral on a particle centered at r by use of
a Taylor series expansion to yield

�hrv � rui1 ¼ Pðrj0Þ
Z
jr�r0 j¼1

n � rhui2ðr0jr; 0Þdr0

� r � Pðr0j0Þ
Z
jr�r0 j¼1

ðr� r0Þn � rhui2ðr0jr; 0Þdr0

" #
þ . . . ð60Þ

The first term on the right-hand side of the above expres-
sion can be evaluated from the local expansion of the veloc-
ity field near a representative tube a (cf. Eq. (15)) which
shows the integral to equal pGþ 4pAa

0. The second term
is related to the stresslet induced by the presence of the disk
and contributes to the effective viscosity of the medium.
Ignoring the higher-order terms in Eq. (60), and combining
Eqs. (56) and (58), we obtain

r � lBðrÞrhui1 ¼ Gþ 4pngðrÞhA0i2ðrjr; 0Þ; ð61Þ

where lB is the Brinkman viscosity and g(r) is the radial
distribution function defined by P(rj0) = ng(r), n being
the number density of tubes. The Brinkman viscosity is
defined via the closure

lBðrÞrhui1 ¼ rhui1ðrj0Þ þ P ðrj0Þ
Z
½r�r0 �¼1

ðr0 � rÞn

� rhui2ðr0jr; 0Þdr0: ð62Þ

The non-dimensional pressure gradient G is related to the
unconditionally-averaged velocity and monopole by
G = �4pnh ui0hA0i0 � j2hui0 (cf. Eq. (14)).

To make further progress in determining the condition-
ally-averaged velocity we employ an effective-medium
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approximation in which a simple, single disk model is used
for determining the conditionally-averaged velocity field.
Since the disks are non-overlapping, there is a net depletion
in the number density of disks in the immediate vicinity of a
disk. To account for this we assume an exclusion region
around the fixed disk at origin for 1 < r < R. The condition-
ally-averaged velocity satisfies the equations of motion for a
single-phase flow (cf. Eq. (11)) in this exclusion region. Out-
side this region the fluid-disk medium is replaced by a med-
ium whose properties are consistent with the average
properties and average equations of motion for flow through
fixed bed of disks. (Fig. 5) The radius R is chosen so that the
exclusion area around a fixed disk equals that in the actual
bed. Since the depletion of number density near the disk
equals n � P(rj0), we require that

pR2 ¼ 1

n

Z
r>0

½n� P ðrj0Þ�dAr: ð63Þ

The quantity on the right-hand side can be expressed in
terms of zero wavenumber limit of the structure factor
S(0) to yield

/R2 ¼ 1� Sð0Þ; ð64Þ

where the use has been made of the relation / = np. The
above choice for the exclusion radius R was made by Dodd
et al. [12] who showed that the effective-medium approxi-
mation based on this value of R agrees very well with the
results of rigorous computations for the mobility of inte-
gral membrane proteins in bilipid membranes, modeled
as suspensions of disks. Subsequently, Wang and Sangani
[3], Sangani and Mo [13], and Spelt et al. [14] have used
similar expressions to study a variety of problems in sus-
pensions of disks and spheres. The computational results
presented in Fig. 6 corresponded to hard-disk random con-
figurations. S(0) for these configurations can be evaluated
using [15]

Sð0Þ ¼ ð1� 1:9682/þ 0:9716/2Þ2

1þ 0:0636/� 0:5446/2� 0:4632/3� 0:1060/4þ 0:0087/5
:

ð65Þ
a

R

h

Inner region (r<<h) 

Fig. 5. Effective-m
Note that S(0) ? 1 � 4/ as / ? 0 and this yields the exclu-
sion radius R equal to 2 in the limiting case of very dilute
random suspensions. As seen in Fig. 6, the exclusion radius
R decreases as / increases but remains greater than unity,
the radius of the disk.

Next, we introduce the following closure relation for the
monopole in the effective-medium:

4pnhA0i2ðrÞ ¼ �j2hui1ðrÞ: ð66Þ

Finally, we take lB = 1 for r < R and a constant equal to l*

for r > R. We also take g(r) = 0 for r < R and g(r) = 1 for
r > R. The conditionally-averaged velocity therefore
satisfies

r2hui1 ¼ �j2hui0 for 1 < r < R; ð67Þ
l�r2 uh i1 ¼ j2ðhui1 � hui0Þ for r > R: ð68Þ
Outer region (r=O(h)) 

edium model.
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The above equations together with the boundary condi-
tions hui1 = 0 at r = 1, hui1 ? hui0 = 1 as r ?1, and the
continuity of hui1 and tangential stress at r = R complete
the description of the effective-medium model for determin-
ing the conditionally-averaged velocity. The above equa-
tions can be solved readily to yield

hui1 ¼
j2ð1� r2Þ=4� 2A0 log r for 1 < r < R;

1þ bK0ðj�rÞ for r > R

�
ð69Þ

with j* = j/
p

l*. Here, K0 is the modified Bessel function
of zeroth order. The constants b and A0 are to be deter-
mined using the continuity of velocity and stress at r = R.
The Brinkman viscosity l* is related to the effective diffu-
sivity in reacting media. Calculations of Sangani and Behl
[16] on diffusion into a semi-infinite medium of reacting
spherical traps seem to indicate that the diffusivity of react-
ing media is close to the diffusivity of the medium sur-
rounding the traps. This is equivalent to choosing l* = 1.

We now proceed to develop an approximate theory for
the conditionally-averaged solute concentration field.
Using the closure relation that relates the solute flux to
concentration gradient, Eq. (49) reduces to

k0r2hf i1 ¼ hui1 �
h1� vi1
1� /

: ð70Þ

As in the case of approximation for the conditionally-aver-
aged velocity, we take k0 = 1 for 1 < r < R and k0 = k* for
r > R, where, as mentioned earlier, k* is the effective diffu-
sivity of a medium consisting of disks of diffusivity jc sus-
pended in a medium of unit diffusivity. Numerical results
for k* as a function of jc and /, the area fraction of the
disks, have been reported by a number of investigators.
We shall use the results for random arrays of disks pre-
sented by Sangani and Yao [11]. On solving Eq. (70) we
obtain

hf i1 ¼
j2

4
r2

4
� r4

16

� 	
þ Ar2

2
ð1� log rÞ þC� log rþD� for 16 r 6 R

bK0ðjrÞ
k�j2 þC log rþD for r� R

8<:
ð71Þ

The expression for r > R applies actually to distances that
are small compared with the unit cell size h. For distances
comparable to h, an outer region approximation for hfi1
can be obtained by noting that, since hui1 	 h ui0 = 1 for
r = O(h), h f i1 satisfies the Laplace equation. It is easy to
show therefore that

hf i1ðrÞ ¼ BS1ðrÞ þ hf i0 for r ¼ OðhÞ: ð72Þ

The unconditionally-averaged solute concentration h f i0
can be set to zero with no loss of generality. The relation
between B, C and D can be determined by requiring that
the above expression agrees in the limit r/h ? 0 with that
for the inner region given by Eq. (71) as r ?1. For small
r/h, S1 for square lattice is given by

S1 ¼ �2 logðr=hÞ � 2:6232þOðr=hÞ2: ð73Þ
Matching the solution for hfi1 in the two regions therefore
yields

C ¼ �2B;D ¼ Bð2 log h� 2:6232Þ
¼ Bðlog N � log /� 1:4763Þ: ð74Þ

The constants B, C*, and D* can be determined now from
the continuity of concentration and flux at r = 1 and r = R
(Appendix B).

Next, we develop an approximate theory for determin-
ing the conditionally-averaged w and hence the mixing-
cup solute concentrations in the shell side fluid. Taking
w = 0 inside the tubes and averaging the governing equa-
tions for w yields, as in the case of conditionally-averaged
velocity, the following equation:

r2hwi1 ¼ hð1� vÞfsi1 � hrv � rwi1: ð75Þ

The last term on the right-hand side of the above equation
can be approximated through the use of a Taylor series
expansion to yield

hrv � rwi1 ¼ ngðrÞ
Z
jx�x1j¼1

n � rhwi2ðx1jx; 0Þdlþ � � � :

ð76Þ

The higher-order term in the above expression contributes
a property similar to the Brinkman viscosity, which, as dis-
cussed earlier, can be taken to be unity. The integral in the
above expression can be expressed alternatively using the
divergence theorem asZ
jx�x1j61

r2hwexti2 dA ¼
Z
jx�x1j61

f ext
s dA� 4phC0i2; ð77Þ

where wext and f ext
s are, respectively, the analytical exten-

sions of w and fs into a tube centered at x and C0 is the
monopole coefficient in the expression for w near the sur-
face of a tube (cf. Eq. (40)). Now using h(1 � v) fsi1 =
h f i1 � hvfti1, Eq. (75) becomes

r2hwi1 ¼ hf i1 � 4pngðrÞhC0i2 � ngðrÞ
Z
jx�x1j61

f ext
s dA:

ð78Þ

Using the expression for fs near a representative tube (cf.
Eq. (27)), the above integral can be readily evaluated to
yield

r2hwi1 ¼ hf i1 � hf i0 þ ngðrÞ p
16
½hAi2 � hAi0�

� 4pngðrÞhC0i2; ð79Þ

where the use has been made of Eq. (66) and 4pnhui0
hA0i0 = � j2hui0. Now we need to specify a closure rela-
tion for hC0i2. The condition Eq. (37) can be expressed
equivalently as

hC0i þ n
Z

rP2

gðrÞhC0i2 dA ¼ 0: ð80Þ
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The average monopole hC0i is zero. We therefore take,
analogous to the closure for the monopole hA0i used in
the expression for the velocity field

4pnhC0i2 ¼ �j2ðhwi1ðrj0Þ � hwi0Þ: ð81Þ
Substituting for hC0i2 from Eq. (81) into Eq. (79) and tak-
ing g(r) = 1 for r > R and 0 for r < R we obtain equations
for an effective-medium approximation for hwi1.

In the outer region, i.e., for r = O(h), hui1 approximately
equals hui0. Using Eq. (72) for h fi1 � hfi0, we have

hwi1 ¼ hwi0 � ðB=j2ÞS1 for r ¼ OðhÞ: ð82Þ

The condition that the above expression must match with
the inner region approximation for hwi1 for r� h yields

hwi1 ¼

A0r4

64
ð3� 2 log rÞ þ B0r2

2
ð1� log rÞ � 2C0 log rþ h0þ g0r2

4

� A0/r4

64
þ A0/

576
for 16 r 6 R;

B
j2 ð2 log r� log N þ log/þ 1:4763Þ � rK1ðjrÞ

2j
b

k�j2� bj2

64

h i
þcK0ðjrÞ þ hwi0 for r� R:

8>>>>>>><>>>>>>>:
ð83Þ

The unknowns hwi0 and c are determined by requiring that
both hwi1 and its derivative are continuous at r = R. Then
the mixing-cup solute concentration in the shell side fluid is
determined using hufis = Ghwi0 = 4pnj2hwi0 (cf. Eq. (35)).
Finally, the results of effective-medium approximation
can be expressed as

k ¼ k1 log N þ k2; ð84Þ
where

k1 ¼ 4/A0B
1�R2

4
� 1

j2
� R

2j
K0ðjRÞ
K1ðjRÞ �

1

4A0ð1�/Þ2

 !
;

ð85Þ

k2 ¼ 1þ 3/

8ð1�/Þ2
� /

ð1�/Þ2
D�ex�

/ð27� 11/ÞA0

48ð1�/Þ2
� 4/A0w0;ex:

ð86Þ

The expressions for the constants B, w0,ex, and D�ex are
given in Appendix B. The predictions of the coefficients k
by the effective-medium approximation are compared with
the exact calculations for / = 0.1, 0.3, and 0.5 in Fig. 7. As
in Fig. 4, the coefficients k are shown to be logarithmically
divergent with the number of tubes at these area fractions
of tubes. We see that the approximation slightly underpre-
dicts the coefficients k. In addition, the coefficients k1 and
k2 obtained by the numerical simulations and the effec-
tive-medium theory are plotted as functions of / in Figs.
8 and 9. The filled circles in these figures are the estimates
of k1 and k2 obtained by fitting the results of numerical
computations of the coefficients k as functions of N in
Fig. 7. We find that the predictions of k1 and k2 as func-
tions of / by the effective-medium approximation are in
qualitative agreement with the results of numerical
computations.
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4. Conclusion

Numerical simulations have been carried out to deter-
mine shell-side Taylor dispersion coefficients for laminar,
longitudinal flow along the axes of tubes for the case of
non-absorbing, non-reacting tube walls. Both periodic as
well as random arrays of tubes are considered. The latter
is modeled by randomly placing N tubes within a unit cell
of a periodic array. It is found that shell-side Taylor disper-
sion coefficient DT is expressed by DT = DM(1 + kPe2) and
the coefficient k diverges as N increases, where DM is the
molecular diffusivity of solute on the shell side and Pe is
the Peclet number given by aU/DM with a and U being
the radius of tube and the mean fluid velocity on the shell
side, respectively. The coefficient k is determined by the
spatial average and the fluid velocity weighted average of
the concentration of solute on the shell side. The behavior
of the coefficient k arises due to logarithmically divergent
nature of concentration disturbances caused by each tube
in the plane normal to the axes of the tubes. An effective-
medium theory is developed for determining condition-
ally-averaged velocity and concentration fields and hence
the shell-side Taylor dispersion coefficient. Its predictions
are compared with the results of rigorous numerical com-
putations. This comparison shows that the effective-med-
ium theory slightly underpredicts the logarithmic
dependence of the shell-side Taylor dispersion coefficients
with the number of tubes. However the theoretical predic-
tions for the coefficients of the logarithmic dependence as
functions of the number of tubes are in qualitative agree-
ment with the numerical simulation results. And the pres-
ent analysis also provides the shell-side Taylor dispersion
coefficients for the periodic arrays, i.e., square and hexago-
nal arrays, which are smaller than those for the random
arrays. These simulation results are compared with a cell
theory approximation for wide range of area fractions of
tubes. Agreement between the cell theory and numerical
results is excellent at small area fractions. At larger area
fractions, the cell theory gives better estimates for hexago-
nal arrays due to geometrical closeness.
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Appendix A

Formulas for determining the coefficients of regular
terms
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Appendix B

Formulas for the coefficients B, C, C*, D, D*, D�ex, and
hwi0,ex

B ¼ �C
2
; ðB1Þ

C ¼ R
k�

j2

4

R
2
� R3

4

� �
þ A0R

2
ð1� 2 log RÞ

�
� R

2ð1� /Þ þ
b
j

K1ðjRÞ þ C�

R

�
; ðB2Þ

C� ¼ 1

2ð1� /Þ �
A0

2
� j2

16
ðB3Þ

D ¼ Bðlog N � log /� 1:4763Þ; ðB4Þ

D� ¼ �j2

4

R2

4
� R4

16

� �
� A0

2
R2ð1� log RÞ

þ R2

4ð1� /Þ � C� log Rþ bK0ðjRÞ
k�j2

þ C log RþD

¼ B log N þD�ex; ðB5Þ
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D�ex ¼ �
j2

4

R2

4
� R4

16

� �
� A0

2
R2ð1� log RÞ þ R2

4ð1� /Þ

� C� log Rþ bK0ðjRÞ
k�j2

þ C log R� Bðlog /þ 1:4763Þ;

ðB6Þ

hwi0;ex ¼ �
B
j2
ð2 log Rþ log /þ 1:4763Þ þ 1

k�j2
� 1

64
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